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Abstract

Using the restricted three body problem, the equations of motion (EOM) and

Hamiltonian are computed for the moon's orbit in physical variables. A periodic orbit is found

in the vicinity of the moon's orbit, and classical Floquet theory is applied to the penodic orbit to

give stability information and the complete solution to the equations of variation. Floquet

theory also supplies a transformation from physical variables to modal variables. This

transformation to modal variables is made canonical by constraining the initial transformation

matrix to be symplectic. Actual lunar data is used to calculate the modes for the real moon's

orbit. Once satisfied that the moon's real-world modes are in (or near) the linear regime of the

periodic orbit, the modal EOM are found by doing a perturbation expansion on the new modal

Hamiltonian. The modal results from the real lunar orbit are compared with the modal

EOM/expansion results. The modal expansion proves to be an accurate solution to the moon's

orbit given enough expansion terms.
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THE MODAL SOLUTION TO THE MOON'S ORBIT USING
CANONICAL FLOQUET PERTURBATION THEORY

L Introduction

The study of the Lunar Theory, which is essentially a particular case of the three body

problem, began in 1687 with the introduction of Sir Isaac Newton's Principia. Significant

contributions were made over the last three centuries including those by D' Alembert, Euler,

and Laplace, however most of these approaches are implicitly based on two body, Keplerian

orbits as reference trajectories for classical analytic perturbation techniques. The first real

departure from this classical Lunar Theory wasn't until 1877 when G.W. Hill expanded on

Euler's three body problem by choosing rectangular coordinates that rotate with the Sun's mean

angular velocity instead of the moon's mean angular velocity. In addition, Hill made some

simplifications to what is now known as the restricted three body problem. The result of Hill's

work is a periodic reference orbit in the three body problem coordinates.

One hundred years later, in 1981, Wiesel demonstrated the concept of applying the

classical Floquet problem to the periodic reference orbit to get a Floquet mode reference

solution. The advantage of this over the classical reference solutions is that the Floquet modes

already include some perturbing characteristics (such as precession of the orbit plane) in the

reference solution, before the perturbation analysis is done. More recently, Wiesel and Pohlen

(1992) improved on the concept by constraining the Floquet transformation to modal variables

to be canonical. The result is a canonical Floquet reference solution that is quite applicable for

the Lunar Theory. However, while Pohlen (1992) did illustrate its utility with a Sun-Jupiter

restricted three body example, this reference solution technique has not yet been validated with

real celestial data or for a three dimensional case.
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The purpose of this study is to construct the three dimensional application of the

restricted three body canonical Floquet reference solution to a celestial body for which we have

a plethora of historical data: the moon. Specifically, we will find a periodic orbit in the vicinity

of the moon (Hill's orbit), get the Floquet modes, canonicalize them, constrain the dynamics to

match the real data, and finally get the modal reference solution. This work accomplishes three

things:

1. It provides a second, dynamically more challenging system to demonstrate

canonical Floquet theory.

2. It investigates the applicability of the canonical Floquet theory to an actual

system that is constrained to obey historical data.

3. It lays the foundation for applying further analytic perturbation techniques to

the moon's modal solution as a reference trajectory.

Chapter Two identifies the specific background work that was done prior to this study, and

explains the differences between this and previous applications of Floquet reference solutions.

Chapter Three is a detailed discussion of the theory used to investigate the modal solution,

while the actual software used to implement the theory is described in Chapter Four. Chapter

Five is the results. It includes an analysis of the modal solution as well as real moon's linearity

with respect to the periodic orbit.
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II. Historical Development

2.1 Dynamics

The groundwork for the restricted three body problem was laid out by Euler in 1772.

In applying this restricted three body problem to the Lunar Theory, Hill made some

simplifications that give us the foundation for our dynamic model. Plenty of information was

available on this subject (Brouwer and Clemence, 1961:336 or Szebehely, 1967:602).

2.2 Floquet Reference Solutions

Since 1883, classical Floquet analysis of periodic systems was a common technique

only in so far as determining stability information. The idea of expanding the utility of Floquet

theory to get perturbation reference solutions for periodic orbits was introduced by Dr. Wiesel

in 1980. As mentioned in Chapter One, Dr. Wiesel then went on to develop Floquet mode

reference solutions specifically for the Lunar Theory in 1981. This Floquet perturbation theory

for periodic orbits was further demonstrated by Ross (1991). His work was actually the first to

apply the classical Floquet perturbation theory to a system using the restricted three body

problem for the dynamics. The system Ross chose was the Sun-Jupiter system.

2.3 Canonical Floquet Theory

The classical Floquet problem naturally introduced a tranfomation from physical

variables to modal variables. The next step in the development of this theory was made by

Wiesel and Pohlen (1992) m realizing that this Floquet transformation needed to be canonical.

In their paper, they presented the method for making the transformation canonical which

enabled canonical perturbation theory to be applied properly to Haniltonian systems. Finally,

Pohlen (1992) illustrated this canonical Floquet perturbation theory by applying it to the same

3



restricted three body problem done by Ross (1991). Like Ross, Pohlen used the Sun-Jupiter

system because its high mass ratio made it a good diagnostic case.

2.4 Application

The restricted three body system used by Ross and Pohlen was confined to two

dimensions. Because of the moon's out-of-plane motion, the problem in this work is expanded

to three dimensions. Also, in Pohlen's study, an effort was made to transform complex

eigensystems into real eigensystems to yield real modal vectors. In this study, we allow the

eigensystems and resulting modal vectors to be complex. Finally, where Pohlen used the

restricted three body Sun-Jupiter model as the exact representation of the modal solution, we

go on to constrain the Sun-Earth-Moon model to obey actual moon ephemerides.

4



Il. Theory

3.1 Dynamics

The first step to finding the complete modal solution is to decide on the dynamic model

to be used for the system. In this case, the system consists of the earth and moonx, the sun, and

other lower order perturbing contributors. The restricted three-body problem (R3B) is used to

define the dynamics of the earth-sun-moon system. Perturbation theory will account for the

omitted terms.

3.1.1 The Restricted Three-Body Problem

The general restricted three-body problem was first introduced by Leonard Euler in his

memoir on his second lunar theory in 1772. The definition, according to Szebehely, is this:

Two point masses m, and m2 called the primaries revolve around their
center of mass in circular orbits. In the plane of their motion moves a
third body with infinitesimal mass, not influencing the motion of the
primaries. Assuming Newtonian gravitational forces, find the behavior
of the third body. (Szebehely, 1967:557)

In this study, we assume the conditions above are applicable where the two primaries

are the earth and sun, and the body of interest (the third body) is the moon. We assume that the

earth and sun are both point masses and significantly more massive than the moon, and that the

moon has a negligible affect on the earth and sun. What we now have is the basic setup for G.

W. Hill's approach to lunar theory. Hill took the general restricted three-body problem, applied

the earth-sun-moon system, and made three simplifications to the system:

1. The solar parallax is zero. The disturbing function is truncated.

2. The lunar inclination is zero.

3. The solar eccentricity is zero.

5



Further details of Hils medid can be found in either Bmuwer and Ctemence (1961:336) or

Szebehely (1967:602).

Before the coordinate system for this problem is established, we need to introduce

some dimensionless variables for mass, length and time:

M, M, M2 2M M3 0
Ms+M2  M+2s 2s M+ +M 2

S, i S S2 ()

where M,, M2 . and M 3 are the masses of the sun, earth, and moon respectively. S, and S 2

are the distances of the sun and earth from the center of mass of the system. The total

dimensionless distance between the earth and sun is set equal to one, as is the total

dimensionless mass of the two primaries.

s1 +s 2 =1 m +m 22=1 (2)

Using the definition for center of mass position ( s, ) with respect to mi,,

,= ms, = m, "0+m 2 (s8+s 2 ) =m2 (3)
Em, MI -IM2

we can now define all four dimensionless variables in terms of one non-dimensional parameter,

s2 =mI =1-u (4)

The orbital period, r. , of the earth around the sun is also defined using the dimensionless

parameters as

2 (s, 2)+

where G is the universal gravitational constant If G is set to one, r. = 2x . In addition, the

angular velocity, w, of the primaries about the center of mass is

6



A synodic coordinate system is used as defined by Szebehely (19%7:9) where the origin

is the center of mass of the two primaries. The X-axis is a line between the sun and earth. The

sun is a distance p from the origin in the positive X direction, while the earth is (I-41,) inthe

negative X direction. The Y-axis is such that the XY plane defines the plane in which the

primaries rotate. The coordinate system is synodic since the X and Y axes rotate with the

primaries around the center of mass/origin (see Figure 1). The vectors F, i, and F2 are the

position vectors of the moon with respect to the center of mass, the sun, and the earth

respectively.

gi-1z

mE 0

Figure 1. The Restricted Three Body Coordinate System.
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This coordinate system is the same as described by Ross, with the addition ofthe "z-

axis. The addition of a third dimension has also been discussed in Szebehely (19%7:557).

3.1.2 The Restricted Three-Body Equations ofMotion

Let the generalized coordinates ( q, ) and monmnta (p, ) be defined as

qj = x,y,z pA = p. ,p,

Then, the position of the moon with respect to the center of mass is

X(7 S= or i; =A + yl + ZI (7)

and the inertial velocity of the moon in terms of X, Y, Z coordinates is

,, +x
i-y

Using Eqs (7) and (8), the kinetic (T) and potential ( V) energies of the moon are

calculated as well as the specific Lagrangian (1):

T =I V ' - M3 I r .t _Y 2 i. X2 +2 1
2 2L

V -Gmm,3 + -Gm2 m3

- -m 3(l-P) M3  ) (10)

r2



' = T-V M =m{[(jY)2 +(J'+X) 2 +j2](l )+
2 ~rl r

= I![(i _Y)2 + + X)2+i2] + +ip JU

m3  2- r, r.

where

r2 =jif= (x+l-u)2 +yy +Z2  (12)

Taking appropriate partial differentials of the Lagagian gives epqussions for the gemelized

momenta in terms of their conjugate generalized velocities and vice versa:

Px =-=X-Y t = P. +Y (13)

at

Py = -Y=Y+X ý=p,-X (14)

P, = la- = Z= ps (15)

The Hamiltonian, X, is nowdefined as

X = IP4,#j -(16)

only after eliminating the 4,'s in f&vor of the ps. Substituting Equations (11) and (13-15)

into Equation (16) yields

(•-•) •(17)(P., + Py, + P" ) + PJ - PyX - r(17)

2:r r2

To get the equations of motion for the state vector

gT =

9



we use the Hamilton canonical equawons:

ax .4i =-•-p. ,,A , = 1,2.3 (s

Therefore, the equations of motion for this problem we

aX
�=�=-p, +yapy

aXS= -p = p,- x

aP,.aX
ap,

X ax (I-p).(x-.) p'(x+l-u)
P ax = py - 3 r2

3

Yx (l-.u).y 1u- y

A, = - ' T = -(1r,9),
z3 3

P" OX (i-u). r- (19)

where the p,'s are the inertW velocity components resolved on the rotating fame.

10



3.2 Periodic Orbits

In the last section we established the equations of motion (EOM) for the restricted

tuhee-body problem. Now we need to determine the initial conditions that create a periodic

orbit which generally describes the moon's motion. Obviously, the moon is not in a periodic

orbit for the resticted problem's coordinate system. Because of eccentricity, inclination, the

precession of the plane of the orbit, and many other perturbabons, the lunar orbit does not come

back to meet itself every month ... but it comes close. The supposition is that it comes close

enough to at least be in (or near) the linear region of a periodic orbit.

A periodic orbit is one which closes on itself after each revolution. In other words, the

iitial state vector (of a body in a periodic orbit) will be equal to the state vector at any multiple

of the period:

S(o) = A (20)

However, given uncertainties in the dynamical model, it is difficult to determine what initial

conditions should be used to create the periodicity. "In practice, once a set of initial conditions

has been chosen and the orbit integrated, one will find that the initial and final conditions will

not agree." (Ross, 1991:10). It is useful, therefore, to integrate the equations of variation

(EOV) along with the EOM, because the equations of variation allow us to handle nearby

orbits. It is due to these equations of variation that we can correlate differences in the boundary

conditions to corrections in the initial conditions. As will be discussed shortly, this sets up an

obvious iteration for converging on the correct initial conditions that satisfy Eq (20) and create

the desired periodic orbit

11



3.2.1 Equations of Variation

In order to iterate on the proper initial conditions required for a periodic orbit, it is

necessary to integrate the equations of variation as well as the equations of motion. The EOM

can be written as

X=Z- f(g.t) (21)

where Z is the correlation matrix which has the form

Z={1  1}; 1= identity matrix (22)

This correlation matrix folows theidentities: Z T = Z-1 _Z . Ifwe define the state ()as

the periodic trajectory(P ) plus a small variation ( 8.),

Fr= FCP + 8. (23)

substitute into Eq (21) and expand in a Taylor's series about 89 = 0 (or x = XP ), we get the

equations of variation (Wiesel, 1993:114)

__ 8.1
aX 5xF=O

Za2X 8=Z-2 8.=0

= A(t) 8 (24)

where A is a square matrix of partial derivatives of the equations of motion with respect to the

state variables, evaluated on the periodic trajectory. It is a function of time only. For this study

the A-matrix is

12



0±0 1± 0± 0± 0±

"' -1 0 - 0 1 0

Ox

± 0 0 0 0 0 !

A(t)=Ox (25)
Ox' A41 A4 A43 0 1 0
Ox

axyO, As, A52 A53 -1 0 0

OP. .. .. . 6 Q A 0 0 0]Ox, Op1 .'
uax pJ

where

3(1- P)(x-U)2 
- + 3p(x+ I-U) 2

34 ax r 3-•,)+ 3
=-I-x r• r, rSr

, _ (l-p) 3(l-_p)y2 p 3 2y
2

2 8yr r r r2 3 r.

A(1-) + 3(I .)z2 p 3pZ2  (26)

6 Oz rr 2 r 3 r 2 r2

A =A42. -. )( 1 x-)y 3#,(x,+ I-,)y

ly rs r25

A A43 = 3(l-p)(x-p)z +3p(x +I-p)z
A, = A=+ r2 r

81', 3(l-p.)ywz + 3py'q
A62 = As = a = rr

We now intrduce the square matrix, 0(t1,to) , which is made up of N =6 colunms

(each of which indep e satisfies Eq (24)). 0(tto) is calWl the state uwiams matr

13



and it maps changes in the intial conditions to changes in the final conditions through the

relationship

AI) = 0o,toM)AI(tO) (27)

0 therefore satisfies the equahons of mraaaton which now take the form

46(t,to) = A(1)0(t,to) (28)

where the initial condition, 0(to,to) , equals the identity matrix ( I).

3.2.2 Our Periodic Orbit

We now have the necessary tools to find the periodic orbit for our system. The setup

for our periodic orbit is shown on Figure 2. It is a symmetric periodic orbit with zero

inclination, therefore we set

x(O) = specified p.(O) = 0

y(0) = 0 p, (0) = specified (29)

z(0o)=o0 P(o)=o

Although the moon's motion is not, in reality, completely confined to the plane of the primaries'

motion, we'll let it be so for the periodic orbit and use other techniques to handle the out-of-

plane motion. This assumption was also made by Hill.

The period of the moon in the restricted problem is calculated from a real ephemeris as

r= 2 " , = 2 n" 29,530589 (30)
ry, 365.256363

where r,, is the period of the sidereal year and r. is the mean period from new moon to

new moon as tabulated in the AstonauticalAbnanac (U.S. Naval Observatory, 1986:CI,D2).

14



Sun

Pe-odic Orbiti

Figure 2. Periodic Orbit in the Restricted Three Body Problem.

At this point, we also determine a value for the parameter u :

_=M2 = M 2  = 3.00348069 x 10-6 (31)

MI +M2

Here, M, = I , and M2 = 1/332,946.038 solar masses (U.S. Naval Observatory, 1986:K6).

The general approach is to start with a guess foi the initial conditions based on two-

body dynamics and iteratively integrate the state vector and 4) matrix forward in time to one

period using the EOM/EOV until Eq (20) is satisfied.. Specifically, we want y(0) =y(z) = 0

and p&(0) = &() = 0 . z and p. will stay at zero by themselves, and x and py will return to

their initial values due to symmetry as long as y and Px return to zero. After each integration,

the error at t = r is simply:

15= (32)

15



So the correction to the final state is just -i . Now we want to know how to change the initial

conditions to effect the corrections in the final conditions. Using Eq (27), and removing all of

the superfluous elements, we have:

&i( -) = OkO( r O)&Io

(1(r)) = )41,• 4D5 Jf 'p,(o)) (33)

By solving for 8.(0) , we find the corrections to the initial conditions. Those corrections are

added and the process is started again. This is done iteratively until some tolerance is met (we

used 10-10 ).

3.2.3 First Guess for Initial Conditions

To get our first pass guess for initial conditions, we used two body dynamics solutions.

As shown in Figure 3, the initial x position in the restricted three body coordinates component

is

xo -((-/) R°"IAU`

x=-1 )-_ 1.3495978735,000 km .997423 AU (34)

while the initial y velocity component (in R3B coordinates) is

3.986012 x 1O km AU
00o L- 3-_,000 s = 1.0175- =.034162 (35)

385,000m s TU
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where u,, is the gravitational parameter for the earth and R. is the approximate mean

radius of the moon with respect to earth's center. But since we need the monenlum in they-

direction, we use the equations of motion to get

pyo = yo + xo = -. 963261 (36)

This gives us the first guess for the initial conditions which looks like this:

(0) = [-.997423 0 0 0 -. 963261 OT (37)

After doing the iterative corrections, the final result is the initial condition state vector for our

periodic orbit

.9P(0)=[-.997456 0 0 0 -. 965393 0 T (38)

sun
Earth monXO

I AU

Figure 3. Two Body Initial Guess in the Restricted Three Body Coordinates.
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3.3 Classical Floquet Theory

The basic contribution of classical Floquet theory is that the periodic state transition

matrix, 0 , can be written as

0(t,t1o) = F(t)eJ(t-°)F-I (to) (39)

where F is a periodic matrix, and J is a constant matrix of system frequencies in Jordan

normal form. These system frequencies are called Poincare exponents. If we can find the

constant J matrix, as well as the F matrix over one period, then we have 0 over one period

and, therefore, we have 0 for all time.

To determine J and F, the equations of variation (Eq (28)) are integrated forward in

time to one period ( r). Conveniently, this was already done in the last iteration of finding our

periodic orbit (§3.2.2). The result is 4(r,0), called the monodromy matrix, which looks like

O ,o) = F(r)e-"F'(o) (40)

But F( r)= F(O) because F is periodic, so

o( r,O) = F(O)e'F-'(0) (41)

After rearranging, we get

F-' (0)0( r,O)F(O) = e (42)

which shows that F(O) = F( r) is the matrix of eigenvectors of O(rO) , and e"' is the

diagonal matrix of eigenvalues of V( r, 0). Therefore, after finding the monodromy matrix,

the next step is to find its eigenvalues and eigenvectors.

Given the constant eigenvalues, A2, for the system, then from Eq (42)

Ai, = e"•" (43)

where c, are the system frequencies (Poincar6 exponents). Solving for c, yields

=Ln, (44)
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which are the constant diagonal values of the J matrix. These Poincar6 exponents always

occur as positivw/negatve pairs for canonical systems (each pair corresponding to a mode),

with one exception: when A, = 1 , then there is a repeated value of i•, = 0 . We callthis

pair of zeroes a degenerate mode. For each of these degenerate mode pairs, there is an ct

integral of motion, and a value of one appears in the off-diagonal region of J. It is also

noteworthy that the Poincar6 exponents give important linear stability information about the

periodic orbit. They "can be interpreted just like the eigenvalues of a constant coefficient

system. The imaginary part of a, is the oscillatory frequency of the mode i, while a positive

real part indicates instability" (Wiesel, 1993:125). For our specific periodic orbit, we get one

degenerate mode and two purely imaginary modes. Because the Poincar6 exponents have no

real parts

= 0+Oi

W2= 0+0.8853941825307i
W3 = 0+1.053464567610i

W04 = 0+0i

Cos = 0- 0.8853941825307i

W6 = 0- 1.053464567610i

we know the sy:stem is stable. The monodromy matrix 4b( r,0) , initial eigenvector matrix

F(0), and J matrix are shown in Appendix A.

The next step is to get the eigenvector matrix, F(t) , over one period. Using Floquet's

Theorem (Eq (39)) and differentiating, we find

( tto) = F(t)e-('-o)F-'(to)

(tt= f(tOej'-F-'(to) + F(t)JeJ(-•)F-' (to)

So, by substituting into Eq (28)

4>(t,to) = A(t)0(t,to)
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P(t)ej''-)F-'(to) + F(t)Jej:'- F` (to) = A(t)F(t)e-4 -'.F-'(to)

P(l)+ =(t)J- A(t)F(t)

Therefore,
F= AF-FJ (45)

is a differential equation for F(t). With the initial condition, F(0) , already known, we can

integrate from t = 0-+ r toget F(t) over one period, whichcmbe reduced into aseriesof

Fourier coefficients as described by Brouwer and Clemnence (1961:108-113).

By knowing F(t) over one period, we also have a coordinate asformaion from

physical variables, 59 , to mod variables,

y(t)- F'(t)&i(t) (4)

which is derived from equation (27) by

SAO) = 0to8(t)

69•(t) = F(t)ej('-4)F-1 (to)89(to)

F-1(t)59(t)= e-'("-°)F-'(to)89(to)

() = �(�)47)

Equation (47) is the modal coordinate form of the Floquet Solution. It is a solution to

the linear, constant coefficient, modal equation:

.=jy (48)

where, for canonical systems, J has the form J = Z S , S being a symmetric matrix.

Classical 1Fqjaet theory gives us a complete solution (Eq (39)) to the EOV, stability

information, and a transformation to modal coordinates (Eq (46)). To do the perturbation

expansion discussed in a later section, it is necessary that the transformation be canonical.
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3.4 Canonical Floquet Theory

In the last section, we defined the transformation to modal coordinates as
.y(t)-a F-' ()JR.(t) (6

We would like this modal transformation to be canonical so that a new Hamilton=a can be

derived for the perturbation expansion analysis in a later sectio

The transformation above is canonical only if F(I) is a syMplecuc matrix. That is

Z=F TZF (49)

must hold for all time where Z is the correlation matrix. This eures that the new modal

Hamiltonian, X(y), follows Hamilto's equations (Eq (21))

- a=yz (50)

where y is the modal state vector.

An algorithm was presented by Siegel and Moser (1971:97-103) that normalizes F(0)

to a symplectic matrix, but this algorithm only accounted for a constant F matrix and a non-

degenerate case. Later, Wiesel and Pohlen (1992:6-12) expanded the utility of this algorithm

to include periodic F matrices and degenerate modes.

3.4.1 Symplectic Periodicity for Non-Degenerate Modes

Because the Poincar6 exponents, co, always occur in positive/egative pairs for non-

degenerate canonical systems, the J matrix can be written in the form

'jo a 0J (51)

where fl is a diagonal matrix with one of each w, pair on the diagonal. By differentiating

Eq (49) and recognizing that Z is constant matrix, we get

S= FPTZF+FTZF = 0 (52)
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Substituting Eq (45) and Eq (49) and some correlation matrix identities, this can be rean*e

to obtain
-J TZ-_Z.J=O (53)

which proves to be true since

_JTZZj. { -0}+{0 }=O (54)

Therefore, if F(O) can be made symplectic, then F(I) will stay syplectic for all time (Wiesel

and Pohlen, 1992:7).

3.4.2 Synplectic Periodiiy for Degenerate Modes

For systems with a degenerate nmde, the J matrix will have a pair zeros and take the

form

J={ 1 -l (55)
where IF has a 1 on its diag location that occupies th same row/column as the degenerifte

mode and zeros everyvwhee else. Just as with the non-degenerate cae, we substitute J into

Eq (53) to show that

JTZZ . -.{ _ }+{ 0 }= (56)

So, once again, the same swr sjwtplecfc, s"as sýwpcc theory holds true. The next step is

to actually make the initial eigenvector matrix symplectic: the subject discussed in the next

section.
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3.5 Symplectic Normalizaton

The theory for symplectic noralization is presented in detail by Wiesel and Pohlen

(1992:8-12), and discusses all possible cases. This section only summarizes the method as it

applies to the lunar modes; that is, one degenerate mode and two non-degenerate (pure

imagmia) modes.

Right now, we have the eigenvector matrix (F) of 0 which follows from Floquet's

Theorem. The intent is to get another eigenvector matrix ( E ) which solves this equation

E-'OE = e" (57)

and at the same time is symplectic.

Z=E TZE (58)

We can write the relationship of the two eigenvector matrices as

E=FD (59)

where

D=r ] (60)

Matrices d, and d2 are diagonal matrices of multiplicative scale factors. These scale factors

are arbitrary with the constraint that the Ah entries in d, and d2 corresponding to repeated

eigenvalues (degenerate mode) be the same. The matrix c is zero everywhere unless there is a

degenerate mode, in which case there is a I in the ith entry along the diagonal corresponding to

the degenerate mode. In our particular case, there is a degenerate mode, so all of the caveats

apply.

Substituting Eq (59) into Eq (58) and rearranging we get

D-TZD-' = F TZF (61)

where D-T is the inverse of the transpose of D. By direct calculation, the above equation

becomes
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D T ZD'= 0 d'd21 '= F TZF (62)

Sinceweknow F, we candetermine he product dd 2 . By seting d, =d2 assuggested by

WieselandPolen, wecasveforthediagonalentriesof d and d2 by

1

dIM. = d =(FTZF)I (63)

V(F ZFIJ+N

With the diagotal values of the D matrix calculated, equation (59) returns the

symplectically normalized initial eigenvector matrix E.

3.5.1 Genemlized Eigenvectors

As mentioned before, our periodic orbit has a degenerate mode, which means one of

the eigenvectors ( f 4 ) in the F matrix is not linearly independent To continue, we need a

generlized eigenvector (.t 4' ) before normalizing to the E matrix To get our generalized

eigenvector, we need to look at the form of the conjugate eiganvector for the degenerate mode

I=[O f 2  0 0] T (f4)

We want linear independence, so if we choose A' to have the form

f 4 '=[f' 0 0 0 fAFOIT (65)

then perpendicularity between the two is automatic.

1 * 14' = o(")

The generalized eigenvector is now calculable from

(0-I)14'= ri; (67)

where r is the period of the periodic orbit and specific to canonical problems. Without the

factor of r included, the F (or E) matrix is not periodic.
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3.6 Modal Variable Development

We have the initial state vector for the periodic orbit in physical variables, 9.(0), as

well as the initial symplectically normalized eigenvector matrix E(0). Using equations of

motion found earlier

p = -- (21)

k=AE-KJ (45)

the two are integrated forward in time to one period. As both are periodic, they can be reduced

to Fourier series coefficients by harmonic analysis. The method for harmonic analysis is shown

in Brouwer and Ciemence (1961:108-113), although we use an exponential form instead of the

sin/cosine form to accommodate the complex valued E matrix. With these Fourier

coefficients, we know .1 (t) and E(t) for aill tume.

The next step is to randomly select an initial condition state vector, .1(0) , for a near-

periodic orbit trajectory, and integrate forward in evenly spaced time steps through one period.

At each time step, the periodic state vector and E matrix are derived from their Fourier

coefficients as

J=-q

where gx and ge are the Fourier coefficients and i is the imaginary value F"I. The

variation in physical variables 8.1(t) is also calculated at each time

,5(t) = k(t) - t•(t) (6a)

which is finally transformed to modal variables using the now familiar relation

Y(t) = E-'(t)8(t) (69)

Remember that the E matrix replaces the F matrix for a canonical transformaton.
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We now have the modal coordinate form of the Floquet solution to any orbit that is near

our periodic orbit. The form of these modal variables is special. For the noi-degenerate

modes, an unususal symmetry exists between the corjugate modal variables, y, and y,.+:

their real/imaginary parts are switched and of the opposite sign. For example,

y =-a+bi y, =-a-bior
Y,÷N = -b + ai y,+N = +b + ai

For degenerate modes, the real parts are always zero, and the conjugate imagmary parts are

independent.

y, = O+ci

y,+•= O+ &

All in all, there are only two unique values to plot for each pair of conjugate modal

variables. For the non-degenerate mode, we plot the real vs. imaginary parts of the modal

variables to get phase portraits. There only needs to be one plot for each conjugate pair due to

the symmetry (i.e. pick y1 or Y+N . ). For the degenerate modes, we plot the imaginary parts

of the of the conjugate y,, YP+N variables. In the linear regime of the periodic orbit, these

phase portraits have the characteristic forms of centers, saddle points, and straight lines. The

centers arise from modes corresponding to purely imaginary Poincar6 exponents, the saddles

from modes with real Poincar6 exponents, and the straight lines from degenerate modes (zero

Poincar6 exponents). For our periodic orbit case, there are two modes with purely inaginary

Poincar6 exponents and one degenerate mode. As long as we stay in the linear regime, the

three plots should nominally show two circles and one line.

The behavior of the three modes maps back to classical orbital characteristics in the

physical variables. For the degenerate mode (mode 1), variable y, corresponds to a time

displacement of the periodic orbit; while y4 corresponds to negative energy (Wiesel,

1981:236; Wiesel, 1993:23). We refer to mode I as the time/energy mode. Modes 2 and 3 are

the vertical and planar modes respectively, which can be observed by looking at the eigenvector

matrix F in Appendix A. Vectors 2 and 5 have only vertical components ( z and p, ), while
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vectors 3 and 6 have no vertical components. The Poincare exponents (or modal frequencies)

of the these two modes, "when referenced to inertial space, imply modal periods of 8.725 yr for

the planar mode, and 18.703 yr for the vertical mode. These are the familiar periods for the

advance of the perigee and regression of the node in the lunar theory." (Wiesel, 1981:588-589)

Therefore, we call mode 2 the inclination mode and mode 3 the eccentricity mode.

To demonstrate the characteristics of these modal plots, we start by picking the near-

periodic orbit trajectory to be the actual periodic orbit we found earlier. This should make

5& (t) zero for all time, which makes the modal vector zero as well. The modal plots are

simply points with random noise at (0,0) (see Figures 4-6). Next, we excite the modes by

perturbing the near-periodic orbit X , to something other than the periodic orbit. This is

simply a matter of changing the initial conditions. For illustration purposes, each mode is

excited independently with appropriate initial conditions. Figures 7-9 show examples of modal

plots from orbit trajectories in the linear regime of the periodic orbit. They are nearly perfect

circles (Figures 8 and 9) and a something approaching a straight line (Figure 7) when the initial

conditions are perturbed within the linear region. Figures 10-12 show the modes of an orbit

well outside the linear regime. They are unstable spirals and erratic oscillations.

In the next section, we want to determine if the actual lunar orbit is legitimately one of

the near-periodic orbits. In other words, is the moon's orbit in or near the linear regime of our

periodic orbit?
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Figure 4. Time/Energy Mode using Periodic Orbit Initial Conditions.
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Figure 5. Inclination Mode using Periodic Orbit Initial Conditions.
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X 10-21 Mode 3: Not Excited
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Figure 6. Eccentricity Mode using Periodic Orbit Initial Conditions.
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Figure 7. Time/Energy Mode using Initial Conditions in the Linear Region.
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Figure 8. Inclination Mode using Initial Conditions in the Linear Region.
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SX10"9  Mode 3: Unear Regime
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Figure 9. Eccentricity Mode using Initial Conditions in the Linear Region.
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Mode 1: Beyond Unear Region
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Figure 10. Time/Energy Mode using Initial Conditions Beyond the Linear Region.
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Figure 11. Inclination Mode using Initial Conditions Beyond the Linear Region.
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Figure 12. Eccentricity Mode using Initial Conditions Beyond the Linear Region.
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3.7 Actual Lunar Orbit

We now want the near-periodic orbit to be the actual moons orbit This section

discusses the method for using real historical lunar data to get an initial condition state vector,

.g(O), for modal development. With reference to Pohlen (1992), this development is what he

would call the "exact repre ttion" of the modal variables.

3.7.1 Getting 9 (0) from de Ephemeris

To begin, we select some random time at which a new moon occurred, and take

ephemerides from five evenly spaced times that surround the new moon. Specifically, the

following data is collected from the American Ephemeris and NaudicalAlmanac (U.S. Naval

Observatory, 1967) at each of the five times:

lat. - Apparent Latitude of the Moon with respect to the Ecliptic Plane

lon= - Apparent Longitude of the Moon from the Vernal Equinox in the Ecliptic Plane

H7. - Horizontal Parallax of the Moon

ion, - Longitude of the Sun from the Vernal Equinox in the Ecliptic Plane

The horizontal parallax, shown in Figure 13, translates to a distance, R, between the earth and

moon as

R= R9 (70)
sin gI.

The data gathered gives information that looks like Figure 14, but what is really needed

is the position of the moon with respect to the earth in a coordinate system that rotates with the

earth around the sun. Figure 15 shows such a geocentric coordinate system, b , whose b^,-6,

plane stays in the ecliptic and whose b, -axis always points towards the sun. This coordinate

frame is referred to as the Earth Centered Rotating (ECR) fiame.
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Figure 14. Dafta Gathered from Ephemerides.
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MR,

b3

- b (

Figure 15. Earth Centered Rotating (ECR) Coordinate Frame.

Subtracting the sun's longitude from the mwoons longtude

81on. = Ion. - Ion. (71)

yields the desir'd moon position information with respect to new ECR frame in the polar

coordinates: latW, 8on., R (see Figure 16). To get from polar coordinates to rectangular

coordinates we use

A ~Rx:] Ro(W)sja({6km) (72)

[Ze R sin(lat,,) j

Figure 17 shows this tranformtion

39



b3b

Rb ..... ...................... ii

R.o b ......

....
° ° . . .. , . " .... 

. .....

hIon,

Figure 16. Polar Coordi dna Relative to the ECR Frame.
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Figure 17. Rectangular ECR Coordinaes from the Polar Coordinates.
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The last coordinate transf•maton is a translation from the Earth Centered Rotating

coordinate frame to the restricted three body (R3B) coordinate frame. This is accomplished

simply by subtracting the distance between the two frames from the ECR position vector

rR3 = 8 a ] (73)

We now have the moons position, for each of the five data points (times) near our

chosen new moon, in the restricted three body problem coordinate system. A good

approximation for the moon's position at the time of new moon, F(0) , is derived from these

five surrounding positions using the Lagrange Interpolation Formulas presented in the

Handbook ofMathematical Funcions (Abramowitz and Stegun, 1965:879). For our five

point interpolation,

F(O) = F(uo +ah) (a2 - 1)a(a-2) (u) (a-l)a(a 2-4) )

24 6

4 (a2.- )(a2-4)(UO) (a+l)a(a2 -4) (u,

4 6

+ (a2 - 1)a(a + 2) i(u2) (74)

24

where h is the step size between each of the five ephemeris times, u, are the five equally

spaced ephemeris times, F(u1) are the position vectors found from Eq (73), and a is the time

difference between the third data point ( u0 ) and the time of new moon.

To get the initial velocity vector at the new moon time F(0), we take the same five

data points and use the derivative form of Lagrange's Formula (Abramowitz and Stegun,

1965:883)
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J,0= Jo +h) vh{2a'-3a 2 -a+- 4a-3a6 - +4
(0) 12 ';U2)6 ;u,

2a'- Sa 4a'+3a 2 -Sa -4

2 6

2a 3 +3a -a- I i(u2) (75)

Since F(t) and if(t) are the same thing, the initial inertial velocity vector, or generalized

momenta vector, P(0) is calculated using Eqs (13)D(15) as

O) J + (76)

Finally, we have an initial state vector for the actual moon

(f(o)
ICO)=..... (77)
IAo))

This state vector can now be used to develop the modal variables (§3.6) and determine if the

real moon is in/near the linear regime of our periodic orbit

3. 7. 2 Preliminary Results

It should not matter which new moon we select from the ephemerides, therefore we

pick one at random. A real new moon occurred on 9 Feb 1967 at 1044 UT, so the five data

times are spaced one day apart starting on 7 Feb at 0000 UT. The interpolation variables are

shown below and the ephemerides are summarized in Appendix B.

644.0
h= 1.0 (days) a = - (days)

42



u_2 = 7 Feb OOOOUT
U_1 =8Feb OOOOUT
uO =9Feb OOOOUT

u, = 10 Feb 0000UT

u2 = I I Feb 0000 UT

The interpolation method returns a restricted three body state vector for the new moon

that looks like

-. 997341

-4.78964 E - 7

-2.29153E - 4

(O)= (77)

1. 10990E - 3

-.966821

3.79373E - 4

After doing the modal development, the modal variables are plotted and shown in Figures 18,

19, and 20. At best we expect to see circles for the inclination and eccentricity modes and a

straight line for the time/energy mode. At worst, we expect some higher frequency

perturbations about the two circles and oscillating (but bounded) time and energy.
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Figure 18. Time/Energy Mode using Preliminary Lunar Orbit Initial Conditions.
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Mode 2: Preliminary Lunar ibfit
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Figure 19. Inclination Mode using Preliminary Lunar Orbit Initial Conditions.

45



x 104  Mode 3: PreliminaryLunar Odft& II I I I

6-

4-

2-

EO

.-2

-4-

-6-
t-7.O TUs

-8I I I I I

-8 -6 -4 -2 0 2 4 6
Real x10 4

Figure 20. Eccentricity Mode using Preliminary Lunar Orbit Initial Conditions.
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Obviously, there is a problem. While mode 3 looks somewhat close to a circle with

perturbations, mode 2 spirals completely out of the periodic orbitfs linear region. In addition,

the energy (variable y4) of the system seems to be going unbounded. To check these results,

we choose another new moon from the ephemerides: 9 Feb 1986. These ephemerides,

interpolation variables, and initial state vector are in Appendix C. The results from the Feb 86

data are very similar to the Feb 67 results.

The problem is two fold: 1) we are using initial conditions derived from real data for a

particular month, but the period we are using is the average lunar period over history. The

actual lunar period during Feb 67 is longer than the average value; 2) for the initial state vector

x(o(o

we know that i(0) correctly matches the real world, but since p(0) is derived -1 om the real

world and our R3B model doesn't include everything the real world does, then P(0) does not

provide our model with the initial conditions necessary to reproduce the moon's orbit.

To better illustrate the errors, reference Figure 21. This shows the X and Y

components of the periodic orbit and the real orbit in physical, R3B coordinates. Both were

integrated using the R3B model for the same amount of time. They are supposed to have the

same period, but while the periodic orbit makes it back to the X-axis, the real orbit does not.

Our dynamic model and average period are conflicting with what the ephemeris says the real

orbit should be. Therefore the problem is this: given that f-(to) is correct, find P (t0) such

that our R3B model will reproduce subsequent f-(Q)'s that match real data
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-1" Periodic Orbit vs Prelmninary Lunar Orbit
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Figure 21. Periodic Orbit and Preliminary Lunar Orbit in Physical Space. X and
Y components of the Restricted Three Body Problem.

48



3.7.3 Fitting the Initial Moraenta to Our Dynamics Model

The solution to the problem above is to iteratively fit the initial momenta such that the

integrated position matches the desired real position. The process is similar to finding the

periodic orbit initial conditions (§3.2).

We start by picking some later time, t,, after the new moon and collecting more data.

The ephemeris is converted with the same coordinate transformations explained in section

3.7.1 to get the position vector j;,(I). The initial new moon state vector (Eq (77)) is

integrated forward in time to t, so that the error in position at t, is calculated.

( t, ) P• ( t, )-- ( t, (79)

Now Eq (27) is again recalled,

8i; (t , Oi t012) = Wt (to )
= ........ ........ . ........... (80)

so if we assume that the initial position is correct( 6(to) = 0 ) and the differences in final

momenta ( 8p(t,) ) are unimportant, then we can isolate only the parts that concern us to get

8i(11) = 01,2 6(t 0 ) (81)

-F(t,) = 012 8P(to) (82)

Solving for 8P(t0) yields the correction to the initial momenta vector so that

p(to),) = P(to0 )o + 8*( 0 ) (83)

This new initial momenta vector is substituted back into the initial state vector and the cycle is

repeated until the error meets some tolerance (we used 10-l0). When the error is small
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enough, we have a set of initial conditions that, when integrated forward with our R3B

dynamics model, echo the actual lunar ephemeris for time t1 . We then pick a new value for t,

and use those initial conditions as a new first guess. The process is continued until a large

enough t, is found such that the average period of the real orbit matches the period of the

periodic orbit.

The end product here is an initial state vector that wil yield the exact modal

representation of the lunar orbit.
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3.8 Perturbalion Theory

In the last section, we developed the exact modal reprsenain of the moon's orbit.

Here, the goal is to develop an expanded modal solution. That is, we want the equations of

motion for the modal variables based on the perturbation expansion of the new modal

Hamiitonian.

We start with the original Hamiltonian, X () , and expand it in a Taylor's series about

theperiodicorbit(i.e. . 9P or 8.=0 ).

X(x) = Xo+ , + X + X,+--

x0 =x g')
68

166 a2( X xO

1 6 6 3l

'-I~TI Oraxpax.-A R-OxOVx
(84)

The tensor notation for Eq (84) is

X(g) = Xo + JY, 8x" + -- 2v 8x2 2 x,5x, + X Y x, 3x xt + (85)""2 ! " 3 .

The first term, 0 , is a scalar constant because it is the Hamiltonian for the periodic orbit

For simplicity, we choose the scalar constant to be zero. "The second, or linear term is

identically zero, because it describes the motion of the periodic trajectory with respect to itself
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The third, or quadratic term is the Floquet problem, and becomes a constant coefficient, linear

system in the new variablesm (Ross, 1991:31). Therefore, the exp=d Hamiltonian now

looks like

! ! 1

By writing the transformation to modal variables 8x = E y in tensor notation Jx, = e,, y,

we can canonically transform Eq (86) to the new eqmnded Hamiltan in modal variables,
Xc(y).

24yiyj f Y Y!iYk 4! X4 yYjYkYa +-- (87)

where

X24(J 2= e,e,,e, (838)

The X•, term is the consta, symmetric matrix S introduced earlier (§3.3). The X3,

X4., and higher terms are periodic tensors since the partials tensors ( X terms) and the E

matrix are both periodic with the same period as our periodic orbit We ge the partials tesors

as well as the elements of the E matrix from the Fourier coefficients of 9p(t) and E(t) just as

before.

As mentioned in section 3.4, making (I) = E-'(1)89(1) a canonical trsm

ensures that the new modal Hamiltonian X(Y) follows Hamiin's equations. This is useful,

because we want modal equations of motion and we get them from Hamt's equations:
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Again, using tertsor notaton we get

,' (z vW x)) Y =z y+A1z(x3*YYJ k+iz (r4*, YjIY + (92)

The first term is the constant coefficient, linear system we established with Eq (48), where

ZX20 = ZS = J. By itsel A, = Jyj should create modalplots that are perfect circles,

saddles, and straight lines for the respective modes. The second, third, and subsequent terms

represent the perturbations off of the linear system.

We now have equations of motion in terms of the modal variables, with initial

conditions derived by canonically transforming the initial state vector from physical variables.

The modal plots from this expansion solution should compare closely with those from the exact

solution discussed in the last section.

Specifically in our case, when the expansion only includes the X2 term, we should get

perfect circles for the inclination and eccentricity modes and a straight line for the time/energy

mode. As each of the additional perturbation terms are included in the expansin, the modal

plots should agree more and more closely. If all of the most significant terms are included, the

two modal representations should match well. As Fourier series computations get extremely

cumbersome beyond the third term, we choose to limit our expansion to X, .
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IV Software

To do this study, several FORTRAN and MATLABTM computer codes were used.

This chapter discusses the specific software that was developed to accomplish each of the

corresponding sections of Chapter Three. Although the software codes are not presented in

this document, they can be reproduced from the information in Chapter Three or obtained from

the author or Dr. Wiesel. Unless otherwise stated, each code was written in FORTRAN 77.

4.1 Periodic Orbit

The program PERIOD takes our initial conditions guess from section 3.2 (Eq (37))

and, using a predictor/corrector algorithm called HAMING, iterates toward a nearby set of

initial conditions that when integrated for one period, creates a periodic orbit PERIOD is set

up specifically to handle symmetric periodic orbits in the restricted three body problem. The

iteration process was discussed in more detail in section 3.2.2. After finding the periodic orbit

initial conditions, PERIOD calculates the monodromy matrix, eigenvalues, eigenvectors ( F

matrix), and Poincar6 exponents ( J matrix) as described in section 3.3.

4.2 Symplectic Normalization

Before doing the symplectic normalization, the RPEXVEC code is needed to determine

the restricted problem extended (or generalized) eigenvector for those systems, like ours, with

degenerate modes. RPEXVEC uses hardwired values from selected rows of the monodromy

matrix ( 40 ) and the conjugate eigenvector ( f1 ) to solve Eq (67) for the extended eigenvector

I4' using a linear equations solver. The eigenvector matrix F is modified accordingly and

fed into program SYMNRM.

SYMNRM does the actual symplectic normalization of F to E by calculating the

diagonal entries of the D matrix (Eq (63)). The output of SYMNRM is the initial E matrix.
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4.3 Modal Variable Development

The periodic orbit initial conditions, the J matrix, and the initial E matrix are all

inputs to the MODEDV program. MODEDV integrates the periodic orbit and E matrix

forward in time to one period, saving values of each at evenly spaced intervals. Using the

harmonic analysis subroutine CMPFOR (based on the algorithm of Brouwer and Clemence

(1961:108-113)), we then get a set of complex exponential Fourier coefficients for both the

periodic orbit state vector and E (§ 3.6).

The Fourier coefficients are loaded into the program TRAJ, as is the initial condition

state vector of some near-periodic trajectory. TRAJ integrates the near-periodic trajectory in

discrete steps. At each step, TRAJ calls the subroutine MODEVR which sums the Fourier

coefficients of the periodic orbit and E , and calculates the modal vector using Eq (69). The

result is a series of modal vectors evenly spaced throughout the integration time. These modal

vectors are then easily plotted as discussed in section 3.6.

4.4 Real Moon Initial Conditions from Data (Exact Solution)

A MATLABTM code called FEB67.m is used to calculate the real moon's initial

conditions from February 1967 data (an identical code called FEB86.m was also created for

1986 data). The sun/moon information is loaded for five evenly spaced times around the new

moon, transformed into the Earth Centered Rotating frame, and finally translated to the

restricted three body frame. FEB67.m then interpolates to get the moon's position and velocity

vectores as shown in section 3.7.1. After doing one last transformation of the velocity vector to

the inertial velocity vector, FEB67.m returns an initial condition state vector for the actual

moon. This initial condition state vector is nominally loaded into program TRAJ as the near-

periodic trajectory. However, it was shown in section 3.7.2 that the initial momenta needs to

be fitted to our dynamics model.
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Program FITICS takes the initial new moon state vector (output from FEB67.m), and

iterates toward an initial momenta vector such that the integrated position matches the position

listed in the ephemerides at some time after new moon. The process is similar to that used for

program PERIOD and the details are shown in section 3.7.3. The output of FITICS is the new

initial condition state vector that is entered into TRAJ as the near-periodic trajectory.

4.5 Expanded Modal Solution

There are three main programs used to create the modal expansion plots: K3DEV,

K4DEV, and YTRAJ. K3DEV develops the third order periodic tensor ( XW ) of the

expanded Hamiltonian in modal variables. At each evenly spaced time, K3DEV reads in and

sums the Fourier coefficients for the periodic orbit state and E. Then, the third order partial

tensor of the original Hamiltonian ( X3.,,1 ) is retrieved from subroutine ORDER3. Using the

summation convention shown in section 3.8, we get the third order tensor ( X34 ) at evenly

spaced times throughout the period. Again using the harmonic analysis subroutine CMPFOR,

we get a series of Fourier coefficients for X 3. *

K4DEV does the same thing as K3DEV except that it uses subroutine ORDER4 and

finds the fourth order periodic tensor, X 4., of the expanded Hamiltonian in modal variables.

Program YTRAJ is the counterpart of TRAJ. Instead of integrating the orbit in

physical variables and transforming to modal variables at each step, YTRAJ integrates the

modal variables directly. The initial state vector is transformed from physical variables to

modal variables, and the X 3 / X4 Fourier coefficients are read in. At each time step, the X3

and X4 Fourier coefficients are summed and the modal variables are integrated by Eq (92).

The result of YTRAJ is a series of modal vectors that, when plotted over time, should match

the plotted res- Its of TRAJ.
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V Results and Discussion

5. 1 Exact Modal Results

In section 3.7.1, we find an initial state vector in physical variables for the real moon,

however, the initial momenta needs to be fitted such that the model integrations match the real

data at a future time (section 3.7.3). To do the fitting, values of 1, are selected starting with

two weeks after the new moon. Next, one month is tried, then six months, and finally one year

after the new moon. The result is a well approximated initial condition state vector in physical

variables for the moon. This initial lunar state vector is the near-periodic orbit that is integrated

and transformed to modal variables using the TRAJ program. The modes produced are what

we call the exact modal representation.

As stated earlier, the first result of interest is whether the hlnar orbit is in or near the

linear region of the periodic orbit The modal plots of the exact modal representation are

shown in Figures 22, 23, and 24. Figure 22 is a plot of the time/energy mode (mode 1). The

epoch time displacement (variable y, ) is shown oscillating back and forth, which basically

represents in-track fluctuations of the moon's orbit about the original pe,,odic orbit. The

system energy (variable y4 ) is also shown oscillating, however it is bounded. Of the three

modes, mode I has the least stringent requirements for acceptable behavior. As a general rule,

according to Dr. Wiesel, the time/energy mode is considered to be behaving reasonably as long

as the energy stays bounded. As you can see, it does stays bounded.

The next plot is the inclination mode, or mode 2, shown in Figure 23. We are looking

for something close to a circle, and that is basically what we get The plot hows higher

frequency oscillations about a generally circular motion. These higher frequency loops

characterize the perturbations to the linear Floquet periodic orbit. In fact, the number of higher

frequency loops in the pattern (three) corresponds to the order of dominant terms in the Fourier

series. Given the relative size of the oscillations, we can conclude that this mode is not

necessarily in the linear regime, but it is definitely close.
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X 10-3 Mode 1: Exact Modal Representation
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Variable yl x10

Figure 22. Exact Modal Representation of the Time/Energy Mode using Fitted
Initial Conditions.
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x10.4  Mode 2: Exact Modal Representation
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Figure 23. Exact Modal Representation of the Inclination Mode using Fitted Initial
Conditions.
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x10 4  Mode 3: Exact Modal Representation

6

4

2

E 0

-2

-4

t6.0 TUs

-8 I i p

-8 -6 -4 -2 0 2 4 6 8
Real x10 4

Figure 24. Exact Modal Representation of the Eccentricity Mode using Fitted Ini-
tial Conditions.
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Figure 24 shows the plot for mode 3, the eccentricity mode. As with mode 2, we

expect to see a circle and again, the plot shows a circle with higher frequency oscillations. In

this case, however, the eccentricity mode's motion is definitely closer to a perfect circle.

Therefore, mode 3 is close to the linear regime, but not quite in it.

Looking at all three modal plots, it is concluded that the moon's real orbit is not in the

linear region of the periodic orbit, but it is close enough that we can see the reference linear

behavior about which the higher frequency oscillations are being perturbed. The next step is to

proceed with the rest of the analysis and compare these exact modal plots with the expanded

modal plots. They should match closely.

5.2 Expanded Modal Results

In this section we present the modal plots that are derived from the modal equations of

motion based on the perturbation expansion of the new modal Hamiltonian (Eq (92)). These

plots are the results of program YTRAJ, and we call them the expanded modal representation.

They are compared with the exact modal representation results from the last section. The two

modal representations should match closely if we include enough perturbation expansion terms.

The comparison accomplishes three things:

1. It provides redundancy of the exact modal plots to satisfy ourselves

that the technique was properly applied.

2. It verifies that we have successfully transformed the Hamiltonian

itself to modal coordinates.

3. It determines if the perturbations are mostly (or entirely) derived

from only the X -terms that we choose to include in the expansion.

We first run the YTRAJ program only considering the first term ( X 2 ) of the

expanded representation. The expanded modal plots are overlaid with the exact modal plots
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and the results are shown in Figures 25, 26, and 27. As discussed in section 3.8, the X 2

expansion term by itself represents a constant coefficient, linear system. It is the Floquet

portion of the expansion and it exhibits perfect linear behavior. For modes 2 and 3 (Figures 26

and 27), we get a perfect circle that overlays nicely with the exact modal plot to show the path

about which they are perturbed. Mode I (Figure 27) is a perfectly straight line as expected,

where energy is fixed. If the lunar orbit was in the linear regime of the periodic orbit, the X 2

term would essentially be the only term in the expansion necessary to match the two

representations. But since the moon is definitely outside the linear region, we need to include

the perturbation terms. As we include more term in the expansion, we should start perturbing

off of the perfect circles/line, and start matching the exact modal plots more closely.

The YTRAJ program is run again, but this time the X3 term is added to the

expansion. These modal plots are overlaid with the exact modal plots and shown in Figures

28, 29, and 30. The results are unreasonable in that the expanded plots initially follow the

exact solution plots, but then spiral off toward infinity. For example, Figure 29 shows that

mode 2 stays with the first high frequency perturbation loop for a while, but then quickly

spirals away. The best thing to do is to continue adding perturbation terms to the expansion.

Now YTRAJ is run with all terms in the expansion out to the X4 term. The modal

plots are again overlaid with the exact solution and presented in Figures 31, 32, and 33. They

show definite improvement over the previous two sets of modal plots. The expansion modes

stay with the exact modes a lot longer this time, but they still eventually spiral off toward

infinity. Again using mode 2 (Figure 32) as an example, the behavior matches quite well for

the first three or four perturbation loops before it spirals away. The conclusion again, is that

more perturbation terms need to be considered in the expansion. However, instead of dealing

with a computational nightmare, there is an attractive alternative.

It is our contention that the plots would match if we added enough terms to the

expansion, but because the real moon is not in the linear region of the periodic orbit it takes a

great number of the expansion terms to get a perfect match. Consider that X3,• is a 6 x 6 x 6
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X10- Mode 1: Exact(Solid) vs Expanded to K2(Dolled)
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Figure 25. Exact vs Expanded Modal Solution (K2 Only). Time/Energy Mode.
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x10 4  Mode 2: Exact(Soid), vs Expnded I K2(DoMd)
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Figure 26. Exact vs Expanded Modal Solution (K2 Only). Inclination Mode.
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xl0 Mode 3: Exact(Soid) vs Expended to K2(DoWd)8x , , , ,
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Figure 27. Exact vs Expanded Modal Solution (K2 Only). Eccentricity Mode.
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X10 Mode : Exact(SOid) vs Expandwd ID K3 UI)o
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Figure 28. Exact vs Expanded Modal Solution (K2 & K3 Only). Time/Energy
Mode.
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xe 10. Mode 2: Exact(Solid) vs Expanded to K3(Dosed)
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Figure 29. Exact vs Expanded Modal Solution (K2 & K3 Only). Inclination Mode.
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x 10 Mode 3: Exact(Solid) vs Expanded Io K3(DoUd
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Figure 30. Exact vs Expanded Modal Solution (K2 & K3 Only). Eccentricity
Mode.
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10e Mode 1: Exact(Solid) vs Expanded to K4(Dotted)
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Figure 31. Exact vs Expanded Modal Solution (K2, K3 & K4). Time/Energy
Mode.
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x10 4  Mode 2: Exact(Solid) vs Expanded to K4(Dofted)
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Figure 32. Exact vs Expanded Modal Solution (K2, K3 & K4). Inclination Mode.
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Figure 33. Exact vs Expanded Modal Solution (K2, K3 &K4). Eccentricity Mode.
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tensor, X4.,A, is a 6 x 6 x 6 x 6 tensor, and that each element of those tensors has 41 Fourier

coefficients. The computational requirements of the 6 x 6 x 6 x 6 x 6 x 41 (or higher) array

needed to facilitate the X, (or higher) term would obviously be great.

Rather than deal with the laborious task of including the X 5, X 6 , etc. terms to get the

modal plots to match, we created a fictitious moon that exhibits the same basic dynamics of the

real moon but is much closer to the linear regime of the periodic orbit. To get this fictitious

moon, we decrease the amplitude of the real moon's modes by taking the initial conditions in

modal variables and dividing by an arbitrary constant (we use 10.0). The initial conditions in

physical variables are calculated from Eq (46) as

SX(0) = F(O)jy(O) (93)

and loaded into program TRAJ. The result is a set of exact modal plots for the fictitious moona

Meanwhile, the initial conditions in modal variables are loaded into program YTRAJ, where

the only expansion terms included are I2 , X3 , andX4 . The result is a set of expanded

modal plots for the fictitious moon. These new modal plots are compared and shown in

Figures 34, 35, and 36.

Obviously, the fictitious moon is much closer than the real moon to the linear region of

the periodic orbit. In fact, mode 3 (Figure 36) is basically a perfect circle. Since we are so

much closer to the linear regime, we expect that less expansion terms are required to get the

exact and expanded results to match. That is definitcly the case here. The exact and expanded

modes match very closely. Mode I (Figure 34) breaks down the earliest of the three modes,

but even so, the form compares close enough to make the point and it shows behavior that is

much closer to pure time drift with bounded energy (straight line). Mode 2 matches quite well

and mode 3 is essentially a perfect comparison.

One brief side note is in order. Notice that even with the fictitious moon, the

perturbations for the inclination mode and the system energy (y4) are growing with time. The

most likely reason for this is that a value larger than one year may be needed for 1, (§ 5. 1).
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4 x 10 Mode 1: Exact vs Epanded, Fictitious Moon
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Figure 34. Exact vs Expanded Modal Solution (K2, K3 & K4) for Fictitious Moon.
Time/Energy Mode.
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x 165 Mode 2: Exact vs Expanded, Fito Moon
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Figure 35. Exact vs Expanded Modal Solution (K2, K3 & K4) for Fictitious Moon.
Inclination Mode.
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x10" Mode 3: Exact vs Expanded, Fdicious Moon
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Figure 36. Exact vs Expanded Modal Solution (K2, K3 & K4) for Fictitious Moon.
Eccentricity Mode.
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Since the new modal plots matched so well, we have shown that the canonical Floquet

perturbation theory technique was successfully applied to the moon's orbit and that Eq (92) is a

modal solution to the r,'al moon, however a great number of terms would be required in the

expansion.

5.3 Complex Conjugacy

In the paper by Wiesel and Pohlen (1992:9), it was assumed that the eigenvector

matrix of a Hamiltonian system must always contain complex conjugate eigenvectors to

perform a canonical transformation. As it turns out, the eigenvectors of the moon's monodromy

matrix does not contain complex conjugate eigenvectors. It is concluded, therefore, that

symplectic normalization does not necessarily need to involve maintaining complex conjugacy

of the eigenvector's from F to E.
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VI. Conclusions and Recommendations

The main conclusion of this work is that the canonical Floquet theory technique was

successfully applied to the moon's orbit. This study showed that canonical Floquet perturbation

theory is applicable to a system which, besides being dynamically more interesting than

previous applications, is also constrained to obey real historical data We used the restncted

three body probiem to get Hill's lunar orbit as a stable periodic reference orbit, and applied

canonical Floquet theory using interpolated initial conditions from real moon ephemerides of

February 1967. The moon's interpolated initial position proved to be accurte, but the

interpolated initial momenta had to be modified to accommodate the differences in our

restricted three body mod.l and the real world dynamics. We successfully fit the initial

momenta such that the moon's position, when integrated forward for one year, still matched the

data.

The modal plots of the real moon's orbit showed that it was outside the linear region of

Hill's periodic orbit, but still close enough to demonstrate the technique. The time/energy

mode oscillated, but the energy remained bounded, while the inclination and eccentricity modes

oscillated with highe- frequency perturbations about an expected perfect circle. We derived the

modal solution using both an exact and an expanded modal representation. The Hamiltonian

was successfully transformed to modal variables and the modal equations of motion were

found out to three expansion terms. We truncated the expanded solution after each of the first

three terms and compared the modal plots. The results demonstrated that the exact and

expanded representations will agree given that enough expansion terms are included. For the

fictitious moon, three terms were sufficient to consider the modal EOM a viable modal

solution, however the real moon, being further away from the linear region, requires many

more expansion terms.

In future studies, the modal solution found here can be used as the reference trajectory

for further analytic perturbation applications such as Von Ziepel's method. In addition, the
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higher order expansion terms could be included to completely validate our contention. Also,

the fitting of initial momenta to future ephemerides could be extended beyond one year. It

might decrease the magnitude of the higher frequency perturbatons.
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Appendix A: Monodromy Matrix, Initial
Eigenvector Matrix, and J Matrix

The following matrices, used for Floquet themy, help describe our periodic orbit and

were output from the program PERIOD.

The monodromy matrix 0)( rO):

row column
1 1 1.095712688474569
2 1 -20.370277922605400
3 1 0.OOOOOOOOOOOOOOOE+000
4 1 274.031141304028700
5 1 -1.269564310370324
6 1 0.0000O0000000000E+000

1 2 6.294761110516258E-001
2 2 8.048342665042469E-001
3 2 0.OOOOOOOOOOOOOOOE+000
4 2 1.269564305657530
5 2 -8.349576338746477
6 2 0.OOOOOOOOOOOOOOOE+O000

1 3 0.OOOOOOOOOOOOOOOE+000
2 3 0.OOOOOOOOOOOOOOOE+000
3 3 8.601930291457586E-001
4 3 0.OOOOOOOOOOOOOOOE+000
5 3 0.0000000000000•OE+000

6 3 -7.345815692997451

1 4 4.745632093038844E-002
2 4 -1.471358089142643E-002
3 4 0.OOOOOOOOOOOOOOOE+000
4 4 1.095712688719114
5 4 -6.294761110578383E-001
6 4 0.000000(R)0000000E+000

1 5 1.471358087321641E-002
2 5 -1.491295028851029
3 5 0.OOOOOOOOOOOOOOOE+000
4 5 20.370277922636880
5 5 8.048342661624743E-001
6 5 0.OOOOOOOOOOOOOOOE+000
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-oorm matrx (oant)

row column
1 6 0.0000000000000003E+000
2 6 o.oooooooOOOOOOOOE+OOO
3 6 3.540354992250493E-002
4 6 O.OOOOOOOOOOOOOOOE+000
5 6 O.OOOOOOOOOOOOOOOE+OOO
6 6 8.60193029146212SE-001

ThM initial cigenvector matrix F(0):

row column (real Iiingmaiy
1 1 (-8. 1927936330481 79E-014,2.0071 80267772390E-027)
2 1 (-7.53901 8574763626E-002, 1.66730286291 538E-01 7)
3 1 (-1.217710722943405E-019,4.9721 71 594093748E-023)
4 1 (l.000000000000000,0.OOOOOOOOOOOOOOOE+000)
5 1 (-1.361796347709330E-01 1,-1.3056822963335&BE-026)
6 1 (-9.1 89976165277692E-01 9,2.6 10493483499758E-023)

1 2 (-7.539018574755219E-002,-1.439135915971290E-012)
2 2 (1.4055902152650I0E-01 1,-1.021808214943804E-001)
3 2 (-3.808102176268219E-017,2.61771 1356936501E-018)
4 2 (-1.757523295343237E-010,6.646921 145391658E-001)
5 2 (1.0000000000,OOOOO.OW OOOOOOOE+000)
6 2 (-1.999332831133622E-017,-4.141361260090141E-017)

1 3 (8.609626586666082iE-01 7,-i .47091 3273776291E-01 7)
2 3 (-9.4037315374165 13E-01 7,-4.1995633295931 59E-0 16)
3 3 (3.09269381 2092022E-014,-6. 9423002336833507E-002)
4 3 (1.3912872253189998E-01 5,6.660459595692267E-01 5)
5 3 (-1.3325985927791 62E-01 5,3.703060854033629E-01 6)

1 4 (3.589486770491939E-003,0.OOOOOOOOE00
2 4 (0. OOOOOOOOOOOOOOOE+000,0.000OOOOOOOOOOOOE+000)
3 4 (0.OOOOOOOOOOOOOOOE+O00,O.OOOOOOWOOOOOOOOE+000)
4 4 (0. OOOOOOOOOOOOOEOOE+0.OO.OOOOOWOOOOOOOOE+000)
5 4 (-2.3349S1756025643E-002,0.OOOOOOOOOOOOOOOE+000)
6 4 (0.OOOOOOOOOOOOOOOE+000,0.0OOOOOOOOOOOOOOE+000)

so



initia cigenvector matrix (cont.)

row column (real,. imagiary)
1 5 (-7.539018574755219E-002,l.43913591 5971290E-012)
2 5 (l.4055902152650I0E-01 1,1.021808214943804E-001)
3 5 (-3.808102176268219E-017,-2.61771 1356936501E-018)
4 5 (-1.757523295343237E-0l0,-6.646921 145391658E-001)
5 5 (1 .000000000000,OOOO.OOOOOOOOOOE+000)
6 5 (-1.999332831133622E-017,4.141361260090141E-017)

1 6 (8.6096265S6666082E-0l 7,1.470913273776291 E-0 17)
2 6 (-9.403731537416513E-017,4.199563329593159E-016)
3 6 (3.09269381 2092022E-0 14,6.942300233683 507E-002)
4 6 (1.391287225318998E-015,-6.660459595692267E-01 5)
5 6 (-1.332598592779162E-015,-3.703060854033629E-016)
6 6 (1 .000000000000,0.WOO OOOOOOOOOOE+000)

The Jmatrix:

row column (real, imaginaay

2 1 (0.OOOOOOOOOOOOOOOE+000,0.00000000E00
3 1 (0.OOOOOOOOOOOOOE+000,0.OWOOOOOOOOOOOOOE+000)

3 1 (OOOOOOOOOOOOOOE+000,0.00000000E00
5 1 (0.OOOOOOOOOOOOOOOE+000,0.OOOOOOOOOOOOOOOE+000)
6 1 q(0.000000000000000E+000,0.000000000000000E+000)

1 2 (0. 000000000000000E+000,0. 000000000000000E+000)

2 2 (0.000000000000000E+000,0.S53941825307000OE-000)

4 2 (0. OOOOOOOOOOOOOOOE+000,0.8591237OE01
5 2 (0. OOOOOOOOOOOOOOE+000,O.OOOOOOOOOOOOOOOE+000)

6 2 (0. OOOOOOOOOOOOOOOE+000,0. OOOOOOOOOOOOOE+000)

1 3 (0. OOOOOOOOOOOOOOE+000,0.OW WOM E00

2 3 (0. OOOOOOOOOOOOOOOE+000,0.OOOOOOOOOOOOOOOE+000)

3 3 O.OOOOOOOOOOOE+000, 1.053464567610000)
4 3 (0. 0000000000000E+000,0. OOO WOOOOOOOOOE+000)
5 3 (0. OOOOOOOOOOOOOOOE+000,0. 000000000000000E+000)
6 3 (0. OOOOOOOOOOOE+000,0.000000000000E+000)
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J matrix (cont.)

row column (real, imaginary)

1 4 (O.OMOOOOOOOOOOE+OOO.OOOOOOOOOOOOE+O)
3 4 (O.OOOOOOOOOOOE+OOO,O.OOOOOOOOOOOOOOOE+OOO)

5 4 (O.OOOOOOOOOOOOOOOE+OOOO0.OOOOOOOOOOOOOOOE+OOO)

4 5 (O.OOOOOOOOOOOOOOOE+OOO,O.OOOOOOOOOOOOOOOE+OOO)

3 4 (0. OOOOOOOOOOOOOOE+0O0,O.0OOOOOOOOOOOOOOE+OOO)
4 4 (0. OOOOOOOOOOOOOOOE+000,O.0OOOOOOOOOOOOOOE+0OO)

5 5 (0.OOOOOOOOOOOOOOOE+OOO,-S.853941S25000000E-OOI)

2 6 (O.OOOOOOOOOOOOOOOE-i-OO,0.0OOOOOOOOOOOOOOE+OOO)
3 6 (O.OOOOOOOOOOOOOOOE+OOO,0.0OOOOOOOOOOOOOOE+OOO)

3 6 (O.OOWOOOOOOOOOOE+OOO,O.OOOOOOOOOOOOOOOE+O0)

4 6 (0. OOOOOOOOOOOOOOOE+OOO,0. OOOOOOOOOOOOOOOE+000)

6 6 O.OOOOOOOOOOOE+O00,- 1.053464567610000)

82



Appendix B: Ephemerides from February 1967

The following data was collected fromn th American Epheinens and NaaaicaI

Almanac (U.S. Naval Observatory, 1967:19,53) for February 1967:

Datefirime Moods Apparent Longitude Moods Apparent Latitude
a 1 0 1 H

7 Feb / 0000UT 28940O 15.40 55.35d0 -4.40 38.dO 35.4640
8 Feb / 0000UT 301.40 56.dO 55.63d0 -4.d0 56.40 09.1340
9 Feb /O0000UT 314.40 27.40 13.680 -4.40 59.dO 07.2540
10 Feb /O0000UT 326.40 46.40 52.4940 -4.40 47.40 57.1340
IlIFeb / 0000UT 338.40 56.dO 15.1440 -4.40 23.40 42.4240

DatelTimne Moons Horizontal Parallax Sud's Longtude
0 1 0 1

7 Feb /O0000UT 0.40 56.40 01.69240 317.40 31.40 10.340
8 Feb /O0000UT 0.dO 55.40 34.26640 318.40 31.dO 58.340
9 Feb / 0000 UT 0.40 55.40 09.02240 319.40 32.40 45.240
10 Feb /O0000UT 0.40 54.40 46.50940 320.40 33.40 30.840
IlIFeb / 0000UT 0.40 54.40 27.58040 321.40 34.40 15.040
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Appendix C: Ephemerides from February 1986

This appendix contains the information that was used to run the alternate new moon

data for verification of the errors in the preliminary results. The following data was collected

from The AstronomicalAlmanac (U.S. Naval Observatory, 1986:C4,D6) for February 1986:

Date/Time Moon's Apparent Longitude Moon's Apparent Latitude
0 0

7 Feb / 0000 UT 291.38d0 -4.91d0
8 Feb / 0000 UT 305.52d0 -5.0ldO
9 Feb / 0000 UT 319.44d0 -4.81d0
10 Feb / 0000 UT 333.07d0 -4.34d0
I IFeb / 0000 UT 346.35d0 -3.64d0

DatelTime Moon's Horizontal Parallax Sun's Longitude
0 9 0 1

7Feb/OOOUT 0.dO 59.dO 05.18d0 317.d0 55.dO 01.47d0
8Feb/0000UT O.dO 58.d0 41.18d0 318.dO 55.dO 49.69d0
9Feb/0000UT 0.dO 58.d0 09.23d0 319.dO 56.dO 36.72d0
10 Feb/0000 UT 0.dO 57.dO 31.30d0 320.dO 57.dO 22.47d0
IlFeb/0000UT 0.dO 56.dO 50.16d0 321.dO 58.d0 06.84d0

The new moon selected from 1986 occurred on 9 February 1986 at 0055 UT, therefore the

interpolation variables and subsequent initial state vector for this case are:

55.0
h= 1. 0 0a(days)1440.0

u_2 =7 Feb OOOOUT

u_ =8Feb OOOOUT

uo =9Feb 0000UT
u =10 Feb 0000UT

U2 =11 Feb 0000 UT

9(0)=[-0. 99748 -6.9847E -7 -2.1084E -4 1.575 1E -3 -0.96495 7.7049E - 4]1
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